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Abstract—Federated learning (FL), as a potential machine
learning framework for privacy preservation, has gained sig-
nificant attention. However, the considerable communication
overhead associated with FL remains a prominent challenge. To
mitigate this issue, a nonuniform quantization scheme based on
Lloyd-Max algorithm is introduced in this letter. By employing
this approach, less communication resources are consumed to
achieve the same performance. Through performance analysis
and numerical simulations, we verify the convergence and effec-
tiveness of the proposed algorithm. It demonstrates the potential
of our approach in reducing communication overhead while
maintaining reliable performance in FL systems.

Index Terms—Federated Learning, Communication Efficiency,
Nonuniform Quantizer, Lloyd-Max Algorithm.

I. INTRODUCTION

Mong the various machine learning (ML) methods, fed-

erated learning (FL) emerges as a prominent candidate
for preserving privacy, initially introduced by the research
team at Google [1]. In FL, local clients cooperate to implement
learning. Specifically, they are allowed to jointly train a global
ML model without sharing raw data among themselves or
transmit raw data to a central server [2].

However, the constant updating of model parameters may
engender substantial communication overload, which becomes
a major bottleneck in specific scenarios [3]. In pursuit
of higher communication efficiency, series of well-regarded
strategies come to the fore. These include model updates
size reduction and communication frequency reduction, which
encompasses techniques such as quantization [4]—[8], sparsifi-
cation , and periodic aggregation. Among these, quantization
stands as a preeminent choice owing to its adaptability and
robust performance [9].

The process involves applying lossy compression algorithms
to quantize each entry to a finite-bit low-precision value. How-
ever, existing analyses have predominantly revolved around
the use of uniform quantizers [4], [S], [10] across various
scenarios and quantization levels. Additionally, renowned for
generating a globally optimal quantizer when the probability
density function (PDF) of a random variable is log-concave,

Guojun Chen, Tiecheng Song and Jing Hu are with the School of Informa-
tion Science and Engineering, Southeast University, Nanjing, 210096, China,
and also with the National Mobile Communication Research Laboratory,
Nanjing 210096, China (e-mail: guojunchen@seu.edu.cn; songtc @seu.edu.cn;
louy @seu.edu.cn). Kaixuan Xie and Lun Xin are with the China Mobile Re-
search Institute, Beijing 100053, China (e-mail:xiekaixuan @chinamobile.com;
xinlun@chinamobile.com). Yuheng Tu and Yinfei Xu are with the School of
Information Science and Engineering, Southeast University, Nanjing, 210096,
China (e-mail: 213213274 @seu.edu.cn; yinfeixu@seu.edu.cn).

the Lloyd-Max algorithm is recognized for scalar quantization
[11], [12]. Although [6]-[8] provided compression scheme
based on Lloyd-Max algorithm, [6] only normalizes the value
of each parameters into [0, 1]. All of them require local clients
and central server to generate and transmit the parameters
of quantizers per iterative round, which incurring substantial
computational and communication costs.

There is a scarcity of existing works that consider the
statistical characteristics of the transmitted data to enhance
compression. Recent research on gradient distribution analysis
[13]-[15] demonstrates that the distribution of coordinates in
each local gradients vectors tends to a Gaussian distribution.
Prior works, such as [14], [16], have introduced rate-distortion
theory to mitigate gradient redundancy between local clients.
However, their compression methods come at the cost of
computational complexity and local privacy.

To overcome these challenges, we propose a nonuniform
quantization FL(NQFL) approach, offering greater flexibility
and simplicity. The objective of our work is to propose an
encoding-decoding system that reduces resource consumption
and mitigates the impact of quantization errors, enabling the
FL system effectively complete the learning process. The main
contributions of this letter are summarized as:

e The proposed NQFL scheme utilizes a data normalization
method to ensure that the transmitted data can use the
same quantizer, thereby reducing the computational and
communication overhead caused by frequently generating
quantizers and transmitting quantizer parameters.

o The proposed NQFL utilizes the statistical characteristics
of local gradients and compresses them in a nonuniform
quantizer based on Lloyd-Max algorithm. Thereby, the
quantized error is mitigated to improve the convergence
speed of FL, decreasing the iterative rounds and commu-
nication costs.

o The convergence of the proposed NQFL scheme is an-
alyzed theoretically, and the performance of NQFL is
evaluated numerically.

The rest of this paper is structured as follows. Section II
presents the system model of FL. In Section III, we design
the nonuniform quantizer based on the data pre-processing
method and Lloyd-Max algorithm. The performance analysis
is established in Section IV. Section V contains the numerical
simulation results, and Section VI contains the conclusion.

II. SYSTEM MODEL

In this section, we provide a comprehensive overview of
the framework of the communication efficient FL system. The



FL system comprises K local clients and a central server that
cooperatively establish models in a distributed manner. Similar
to the standard FL, The objective is to recover the optimal
m X 1 model vector w® that satisfies

K
w° = argmin {F(w) A % > Fk(w)}. (1)
k=1

where {x},y}}"*, denote the set of ny labeled data samples
available at the kth local client, with & € {1,2,..., K}. The
local objective functions are defined as the empirical average
over the training set

Fr(w) £ Frp(w; {z, i} 75)
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where ¢(-) represents the sample-wise loss function that mea-
sures the prediction error of the model w on the training
samples z"* with respect to the labels y™*. In this paper,
for communication efficient FL, the process of each iteration
is divided into three phases: local updated phase, model
transmission phase and global aggregating phase. This paper
focus on designing an efficient scheme for model transmission
phase since another two phases are similar to the standard FL.
Local Updated Phase: After downloading the global model
parameters w from the central server, each local client trains
a specific neural network model by minimize the objec-
tive function Fj(w). Due to the typically large number of
model parameters w and the intrinsic complexity of most
machine learning models, finding a closed-form solution to
the optimization problem (1) is usually intractable [6]. Thus,
local clients calculate the model gradients based on stochastic
gradient descent (SGD) to solve this problem, expressed as

g 2 VF,(w). 3)

where, g;, is denoted as the gradients on the kth local client.
For distributed collaborative model training, the gradients
need to be transmitted to the global server through model
transmission phase.

Model Transmission Phase: In communication efficient
FL, this process is crucial due to the precious and scarce nature
of communication resources. It is imperative to compress the
gradients into a finite-bit representation before transmission.
Depending on the channel status, the updated gradients are
need to be transmitted with a limited bit rate R, which is
determined by the global server. The model transmission phase
consists of two steps: encoding and decoding.

The encoding step is performed on the local clients. In this
step, each coordinate of g, € R™ is encoded into a digital

codeword of R bits, represented as uy € {0,---,2% —1} £
Uy Given the ith element of gradients g € R, where i €
{1,2,...,n4}, the encoding function is expressed as:

er: R — Uy. (4)

Afterwards, each local client uploads the codewords {u} }7*;

to the central server under a certain communication rate R.

The decoding phase is processed on the central server. Upon
receiving the codewords {u}}:*, from all local clients, the
estimated g,, is reconstructed using decoding functions:

Global Aggregating Phase: Then the central server aggre-
gates the global gradient by federated averaging (FA), via

1K
9=12> 9 ©6)
k=1
and updates the current global model as
wupdate =w—1g, (7)

where 7 is the learning rate. Finally, the updated global
gradient g is broadcast to all the local clients. In addition,
the central server jointly consider the channel status and
loss function value to adjust transmission rate R of the next
iteration.

III. NONUNIFORM QUANTIZED FL DESIGN

In this section, we propose the NQFL design in detail,
mainly employed in the model transmission phase. The NQFL
process consists three steps: data preprocessing, data quan-
tization and data estimation. This section will explain the
above three stages one by one. Then we will design NQFL to
solve the learning problem expressed in (1) by minimizing the
quantization distortion and decreasing the computation time.

A. Data Preprocessing

In order to better employ the compression algorithms, an
effective data pre-processing method is crucial for maximizing
their efficiency. A common practice is to normalize each gradi-
ents component gi. to the range [0, 1] using the formula I:Z%‘H’
as widely applied in [5], [6]. However, each the local client
needs to design a specific quantizer and share the parameters of
the quantizer with the central server per iteration. This can lead
to unnecessary computational and communication overheads.

In the proposed NQFL system, we utilize the property of
the gradients for some specific learning models. Inspirited by
[13]-[15], the distribution of each coordinate gfc in local gra-
dient vectors g,, tends to a Gaussian distribution N (u,07),
where pj; and op are the mean and standard deviation of
{gi 1., respectively. To enable all participants use a unified
quantizer, the gradients are normalized to the standard normal
distribution A/(0,1) by

g’,i — Mk
Ok

9 = ®)
Thus, the local clients only need to upload the quantized value
of gradients with mean and variance instead of the parameters
of quantizers. In addition, the local clients have no need
to update the quantizers if the required transmission rate is
unchanged. This may significantly reduce computational over-
head. For instance, the computational complexity for proposed
normalized processing is O(ng). Since the computational
complexity of generating a Lloyd-Max quantizer is O(n - 2% .



T10 ), where Ty ps denotes the number of the interative round
for Lloyd-Max algorithm. The total computational complexity
of the proposed NQFL is Ty, - K(O(n)) + O(n - 2% - Trar),
while the methods based on the standard Lloyd-Max algorithm
cost Trp, - K(O(n) + O(n - 2% - Tppr)), where Trp, represent
the number of iterative rounds for FL. Thus, the computational
complexity of NQFL can decrease (Trr,- K —1)O(n-2%-Tr /).

B. Data Quantization

With the aforementioned data pre-processing method, the
PDF of gradient components is normalized to A(0, 1). There-
fore, the nonuniform quantizer is designed based on the Lloyd-
Max algorithm in this paper.

Firstly, we provide a brief overview of the Lloyd-Max algo-
rithm, which shares similarities outlined in [17, Section IIL.A].
Generally, an M-level quantizer Q(x) for an input value z
consists of a pair set of quantization levels I =11, -, and
quantization boundaries T = 7, --- ,Ta. The quantization
result Q(z) = I, if * € (Tip—1,7m)s m € 1,--- , M. To
minimize MSE, the Lloyd-Max algorithm determines the op-
timal quantization parameters based on the following iterative
process:

f:’"ﬁl xfx(z)dx
I = —F———, &)
fﬂ::l fx(z)dz

T = (mel + lm),
2

(10)

where fx () is the PDF of input x. The distortion is defined
by the MSE as

M

D=3,

m=1

Therefore, with the given transmission rate R, the opti-
mal quantizer with M = 27 levels is calculated by the
aforementioned Lloyd-Max algorithm until the distortion con-
vergence. We denote the optimal parameters of quantization
levels and quantization bounds as I* = {I,---,l},;} and

7 = {73,---, 75}, respectively. The nonuniform quantiza-
tion function performs

Tm (93 - lm)zfX (.I)dl‘

Tm—1

(11)

Qno(z,R) =1y, ifx e (17,_1,70] (12)

After presenting the quantization scheme, we discuss the
communication costs for one learning iteration round. It re-
quires R = [log2 M| bits to represent the quantized index
of each coordinate §i. To mitigate the quantization bias, the
mean and variance are transmitted with full precision using
32 bits, which can be transmitted in block with bit-limited.
Therefore, denoting the total number of bits as Cj, the total
communication costs of the FL process are

K

Cs = Z (Z(nk [loga M) + 64)

t=1 k=1

13)

where, T" and K is the total iterative round and number of
clients. ny, is the dimensions of the gradients on the kth client.

Remark 1: For each iterative round, the communication
costs for each client are ny[logaM|) + 64 bits. However,

compared with other compression method, the communication
costs required in [6] are Csrar = ng[logaM] + ng + 32 +
32(2M + 1), where 32(2M + 1) is used to transmit the
quantizer with M levels and M +1 bounds. Thus, our proposed
NQFL scheme decreases about T - K - (nj + 64M) bits,
which is non-negligible since the number of labels is usually
considerably larger (e.g., millions) [7].

C. Data Estimation

After receiving the codewords and pre-processing parame-
ters, the global server reconstructs each coordinate g; via

95, = Qno Uk, R) - o3 + pig, (14)

where, Q;,lQ(u};, R) denotes the inverse function of quantiza-
tion. Then, the central server aggregates the model parameters
by (7) and computes the communication rate R, for the next
iteration. Finally, broadcasting the updated model parameters
and the communication rate to finish one learning round.

D. NQFL Design

With the aforementioned nonuniform quantization scheme,
we are now ready to introduce our NQFL algorithm in
Algorithm 1.

Algorithm 1 Proposed NQFL algorithm

Input: Number of local clients K; Data

{acl(-k), yz(-k) % Preset loss threshold €.

1: while F(w > ¢) do

22 for k=1to K do

3: Center server: Broadcast the current model w and

communication rate R to all local clients.

4: Local clients: Train the local model and calculate
the gradient g, = {gt}.2, by (1)-(3).
Pre-process the gradients by (8).
Quantize each coordinate to Qng(g:, R) by (12).
Transmit the uy, oy and uz to the global server.
Center server: Recover gradients {g, }/_ , and com-
pute the aggregated model according to (6), (7).

9:  end for
10: end while

samples

® W

The main idea of NQFL operates at the local clients, as
depicted in lines 3-6 of Algorithm 1. To reduce computational
overhead by using standardized quantizers, each local client
normalizes the coordinate of gradients as gi, ~ A(0, 1) during
data pre-processing. Consequently, local clients quantize the
gradients using the proposed nonuniform quantizer defined in
(12). They only need to transmit two additional parameters and
the index of each quantized gradient without the parameters
of quantizer. Finally, the central server decodes the gradients
and aggregates them using FA to finish one iterative round.

IV. PERFORMANCE ANALYSIS

In this section, we proceed to analyze the performance of
NQFL by examining its distortion characteristics and studying
its convergence properties. The analysis is conducted based on



the following assumptions, which are commonly employed in
convergence studies of FL [4], [5], [18]:

ASS1: The expected squared norm of stochastic gradients
g), in (3) is uniformly bounded by some G; > 0, ie.
Ellg,|I* < G2.

ASS2: The second moment of stochastic gradient for all
function Fy(-) is bounded: E[(g, — E[g,])?] < .

ASS3: The local objective functions Fj(-) are all L-smooth:
for all vy, vs € Ry, it holds that: Fy(vq) — F(ve) < (v1 —
v2) "V Fi(v2) + §||v1 — va[3.

ASS4: The local objective functions Fy(-) are all C-strongly
convex: for all v1,vy € Ry, it holds that: Fy(vq)— Fi(va) >
(v1 = v2) TV Fy(v2) + S o1 — vaf3.

The convergence properties of NQFL with federated aver-
aging is characterized in the following theorem:

Theorem 1: Let Assumptions ASS1-ASS4 hold and L, C,
Gy, and Xy, be defined therein. Choose v = max{SL E} -1
and the learning rate n; = fel(==o] JW) By denoting w'* as the
initial model parameters, it satisfies

E{F(w') - F(w)} <

L g IN _ 0|2
20t + ) max{cw(WH)E{'w <l }}’

where

ZG

E is the retraining times of w! by local clients and ¢ =
F(w®) — % Zszl min,, Fi(w) is the heterogeneity gap.

Remark 2: These theorem implies that our proposed NQFL
algorithm converges at a rate of O(%) Specifically, the differ-
ence between the objective of the model learned in a federated
manner and the optimal objective decays to zero at least as
quickly as =+, which is the same order of convergence as FL
(51, [18].

Structural Proof: First of all, we expand the averaged noisy
stochastic gradients in (6) and define the desired averaged
gradients as

V3w . 2R
Bfﬁ;2 +6L¢>+ (15)

t’

K
Z (VFu(w') — ), (16)
=1 k
t o 1 t
Gl = E};VF/C(LU ) 17)

Subsequently, we refer to the resulting model used in [18,
Lemma 1]. With the assumptions ASS3 and ASS4, if n; < ﬁ,
the expected distance between the ML model parameters w’*!
in (7) and the optimal parameters w? in (1) is bounded by

E{lo' — wflP} < (1 - nC)E{l|w’ — w|[?} + 6L
K
1
+ 2E{K > I’ - wiIQ} +n7 B{|lg" — ghelI*}, (18)
—_——
k=1

()

(a)

where wt = w! ™' —n,_1g¢ is updated ML model parameters
on the kth UE To further bound Eq.(18), we then derive the

bounding of gradients and the divergence of w}. Then, we
bound the items (a) and (b) of Eq.(18) respectively.

For the divergence of wf, shown as (a) in Eq.(18), it is
bound with ASS1 and the fact that 7, is non-increasing, via

K
1 t t
5 e Dol - < - mKZG

The derivation is similar to [5, Lemma C.2] and [18, Lemma
3], we omit it here due to the limitation of page space.

Then, for the item (b), the approximate quantization error
variance in a M-level Lloyd-Max quantizer [19] is

Here, since each coordinate gi ~ N (uy,o?) and number of
quantization levels is 2%, with Panter-Dite approximation [19],
the quantized distortion of g;, is

19)

E[(z — %) (20)

i ad V3m,
E[(gk_gk)Q}%?Q 2R‘713~

With the assumption ASS2, the quantization error is bounded
K

1 Z V3m 9—2R ;2

K& 2 e

K
O
k=1

Therefore, by defining A; = E||lw! — w°||?, Eq.(18) is
bounded by combining Eq.(19) and Eq.(22) via

A1 < (1—nC)AL + 07 B
B

+

& and > 0, when denoting v = max{ -2; ﬁC—l ,(v+1)80}, the
value of A; is bounded by

2L

Elllg" — ghes||?] =

IN

(22)

(23)

Subsequently, for non-increasing 7y = with some § >

A < v
t+7y
This derivation can be proved by mathematical induction, that
it holds for ¢ = 1, and it also holds for t = ¢ + 1 according
simple derivation from Eq.(23).
Finally, according to ASS3, when setting 3 = 2
combining above parameters, this theorem is proved.

(24)

and

V. NUMERICAL EVALUATIONS

In this section, we conduct a numerical evaluation of NQFL
for a communication efficient FL system. The performance is
evaluated in terms of comparing the costs of communication
resources with a certain test accuracy.

We first introduce the setup of the numerical evaluations.
The FL system consists of K = 10 local clients.We utilize the
dataset of MNIST, FeMNIST and Cifar10. These datasets are
partitioned into a training set of 60, 000, 805,263 and 50, 000
samples, respectively. The deployment of models includes LR
and CNN models, which contain 28 x28 = 784 and 1, 664, 650
model parameters, respectively. To evaluate the performance of
NQFL, we set the initialized learning rate to 0.03. The number
of local iterations on clients is 5 for LR and 20 for CNN.
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Fig. 1. Test accuracy versus communication costs on different algorithms

Both fixed and adaptive communication rate are considered in
this section. We set the communication rate R = 6 bits for
the condition of fixed quantization and initial R = 1 for the
condition of adaptive quantization. The adaptive quantization
model is based on [20], letting the number of quantized
levels dynamically change according to the loss function. We
compare the performance of NQFL against traditional QSGD
[4] and up-to-date quantization algorithm based in Lloyd-Max
quantizer, denoted as SLMQ, [6].

TABLE 1
COMPARISON OF COMMUNICATION COSTS FOR DIFFERENT ALGORITHM
WITH DIFFERENT DATASETS AND LEARNING MODELS WHEN OBTAINING
90% TEST ACCURACY

Dataset Model Algorithm Communication Costs
NQFL 26.78Mb
LR SLMQ 37.91Mb
MNIST QSGD 32.41Mb
CNN AdaQ + NQFL 2.94Gb
AdaQ + QSGD 3.41Gb
NQFL 7.02Gb
FeMNIST | CNN SLMQ 12.37Gb
QSGD 8.32Gb
AdaQ + NQFL 3.89Gb
CIFARIO | CNN - 3+ QSGD 1.86Gb

Fig. 1 illustrates a comparison of test accuracy versus the
communication costs by NQFL, QSGD, and SLMQ, using the
MNIST wiht LR model. The results clearly demonstrate the
efficacy of NQFL algorithm. Regardless of a fixed or adaptive
R, the proposed NQFL can achieve the accuracy (90%)
with the least communication costs, reducing approximate
21.2% and 37.5% communication costs, respectively. Next,
TABLE. I shows the consumption of communication resources
for different algorithms under different datasets and learning
models. When setting the required test accuracy be 90%,
the proposed NQFL always maintains fewest communication
overhead, saving 17.3%, 26.9%, 18.5% and 19.9% commu-
nication resources respectively. Consequently, the proposed
NQFL algorithm outperforms both the uniform and non-
uniform quantization algorithms in terms of both fixed and
adaptive quantization scenario.

VI. CONCLUSION

In this paper, we present a novel nonuniform quantiza-
tion scheme called NQFL, to effectively reduce communi-
cation overhead FL systems. By leveraging a novel data
pre-processing method and the Lloyd-Max algorithm, NQFL
enables compression of ML model to achieve higher commu-
nication efficiency. It is able to accelerate model convergence
without adding much additional overhead. Furthermore, The
convergence of NQFL is derived during the performance
analysis. Finally, we evaluate the efficiency of NQFL using nu-
merical experiments, demonstrating its superior performance
compared to other quantization schemes.
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