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ABSTRACT

Classical neural scaling laws describe how the performance of large language
models (LLMs) improves with increased compute, but they are typically estimated
in aggregate across all questions in a benchmark, overlooking the information car-
ried by individual questions. Item Response Theory (IRT) offers a principled way
to address this by modeling per-question characteristics, though traditional IRT is
limited to binary data with a Bernoulli loss. In pre-training downstream scaling,
probabilities of producing the correct answer over the entire vocabulary yield more
informative laws, while in test-time scaling, repeated sampling naturally gives rise
to empirical probabilities. Empirical probability responses do not arise in human
testing or LLM leaderboard evaluations, settings where IRT has shown success.
To bridge this gap, we propose extending IRT with a Beta loss on empirical proba-
bility responses, naturally yielding Item Response Scaling Laws. We validate our
framework in two large-scale studies: (1) pre-training downstream scaling, using
25 models from 6 families with up to 359 checkpoints on 15 NLP datasets; and (2)
test-time scaling, using 15 models on 10 NLP datasets with up to 10,000 samples
per question. In both cases, IRT-based approaches provide reliable and efficient
estimates of scaling behavior while remaining interpretable and generalizable. E]

1 INTRODUCTION

Modern large language models (LLMs) are general-purpose tools that offer diverse capabilities.
Scaling laws, such as pre-training downstream scaling and test-time scaling, provide a principled
framework for understanding and improving LLM performance. Pre-training downstream scaling
laws characterize how a model’s performance on downstream tasks improves as a function of the
computational effort invested during pre-training, typically measured in floating-point operations
(FLOP) (Biderman et al.|[2023; Mishra et al., |2024). Test-time scaling laws describe how a model’s
inference performance on a benchmark (e.g., success rate) grows with the number of stochastic
samples performed at test time (Brown et al.,[2024; |Hughes et al., 2024).

Deriving these scaling laws requires extensive data; however, practical studies are constrained to
small experimental scales due to their costly nature. As a baseline, LLM evaluation leaderboards
typically involve on the order of 10° questions evaluated across 10? models, amounting to 10%
total queries (Liangl |2023). Based on this, pretraining downstream scaling laws introduce around
10? pretraining checkpoints per model, and test-time scaling laws introduce around 10 samples
per question. These additional dimensions inflate the total number of queries by several orders of
magnitude. Consequently, existing studies often evaluate only a limited set of models and a subset
of benchmark questions, and they rely primarily on mean score as the performance metric (Chen
et al.| [2024; Schaeffer et al.| [2024; [Brown et al.| |2024).

The laws derived from limited experimental scales can exhibit surprising and unintuitive behaviors,
including inconsistencies across different model-benchmark pairs. For example, Brown et al.|(2024)
derives a power-law test-time scaling relationship that, as|Schaeffer et al.[(2025) demonstrates, holds
only for ill-structured response distributions in single-sample success rates. Such phenomena sug-
gest that the benchmark-specific factors, such as the difficulty of each question, play a crucial role
in shaping the scaling behavior. Moreover, mean score on a subset may not reliably reflect overall
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‘ Definition ‘ Classical Fitting Approach ‘ IRT-based Fitting Approach
Pre-training Acc E[Acc(i,D)] = & Z,\:l Dij a-ob-(a- FLOP;‘H +y—c)+d | & ZI/\:I o(f(FLOP;) — z;)
Pre-training pcorrect Choice | PComect Choice (i, D) = & Z]V: 1 PCorrect Choice (i, 7) | g(FLOP;) o Zj\yzl o(f(FLOP;) — z;)
Test-time pass@k(i, D) = & Zé\:l 1—(1—pi)* exp(—a-k7?) % Z;’Zl (1 —(1—o(8; — Zj))k)

Table 1: The definitions, classical fitting approach, and IRT-based fitting approach for Acc,
DCorrect Choice (dOWnstream pre-training scaling law), and pass@k (test-time scaling law). We use
the Rasch model as a demonstration. Classical fitting approaches fit uninterpretable parameters spe-
cific to datasets and LLMs. Our IRT-based fitting approach learns question-level parameters (rather
than dataset-level ones), while being interpretable and generalizable.

performance, nor does mean score on one dataset generalize to other datasets with similar mea-
surement objectives but different difficulty levels (Truong et al., 2025). More fundamentally, these
shortcomings arise because prevailing scaling-law formulations implicitly treat datasets as homo-
geneous inputs and focus exclusively on aggregate metrics, thereby obscuring the heterogeneity of
item characteristics.

Item Response Theory (IRT), originating from psychology and educational testing, offers a prin-
cipled way to address these limitations. IRT parameterizes question-level characteristics to model
the probability that a test taker (human or LLM) answers a question correctly. It is typically ap-
plied in two phases: calibration and computerized adaptive testing (CAT). In the calibration phase,
a binary response matrix is collected from test takers (human or LLMs) and used to estimate item
characteristics such as question difficulty. With these calibrated parameters, CAT adaptively selects
informative subsets of questions to reliably and efficiently evaluate new test takers. IRT has been
highly successful in human testing, and recent work has shown its promise on binary response data
from LLM leaderboards (Biderman et al., 2023} [Mishra et al.,[2024; Magnusson et al.l 2025} |Gadre
et al.} [2024). However, in both pre-training downstream scaling and test-time scaling laws, there is
a need to model empirical probability responses rather than binary responses, an aspect absent from
both human testing and LLM leaderboard evaluations. In the pre-training setting, mean scores often
exhibit emergent behaviors and poor predictability (Lourie et al., [2025), whereas probabilities of
producing the correct answer over the entire vocabulary preserve richer information and yield more
consistent scaling laws (Schaeffer et al.,[2024). In the test-time setting, repeated sampling naturally
gives rise to empirical probabilities. Motivated by this, we propose extending IRT with a Beta loss
to model empirical probabilities, yielding efficiently estimated, interpretable, and generalizable Item
Response Scaling Laws. Our contributions are:

* We conduct a large-scale study on 25 models from 6 model families, ranging from 111M
to 13B parameters, with up to 359 pretraining checkpoints, on 15 popular natural language
datasets, to demonstrate the superiority of our item response pretraining downstream scal-
ing laws: interpretable, generalizable, and giving robust estimates of the scaling behavior
with limited budgets.

* We conduct a large-scale study on 15 models across 10 popular natural language datasets
with up to 10,000 repeated sampling steps. We demonstrate that IRT gives more reliable
estimates of the scaling behavior in an efficient manner, surpassing traditional approaches,
while being interpretable and generalizable.

By embedding the scaling law within the IRT framework, our approach provides a theoretically prin-
cipled and empirically validated alternative to conventional aggregate performance scaling.

2 RELATED WORK

Pre-training Downstream Scaling Law Many neural networks exhibit power-law scaling of the
pre-training loss as a function of the amount of compute, data, or parameters used for training (Hes-
tness et al., 2017; [Kaplan et al., [2020; Bahri et al.| 2021} Hernandez et al.| |2021}; Hoffmann et al.,
2022; Muennighoff et al.| 2024). Unlike predicting loss, predicting downstream performance from
scale is generally harder (Lourie et al., 2025} |Schaeffer et al., [2024). However, recent work has
demonstrated it can be done based on a two-step prediction that chains together predictions from
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scale to loss and loss to downstream performance (Biderman et al., 2023 |Mishra et al.,[2024; Mag-
nusson et al., 2025 |Gadre et al., [2024).

Test-time Scaling Law Test-time scaling laws characterize how a model’s performance on a
benchmark (e.g., success rate) improves as the number of stochastic samples drawn at inference
increases (Brown et al., [2024; [Hughes et al., 2024). [Schaeffer et al.| (2025) demonstrate that such
laws hold only for ill-structured response distributions in single-sample success rates. [Kang et al.
(2025) develop scalable test-time inference strategies that balance sample efficiency and perfor-
mance gains under limited budgets. [Dorner et al.|(2025) establish that the shape of a verifier’s ROC
curve governs the effectiveness of rerolling and best-of-N, formalizing limits of test-time scaling
with imperfect verifiers. Zhang et al.|(2025) survey the test-time scaling literature and outline open
challenges for reliability and generalization.

Measurement Theory-based Al evaluation Several recent works adopt Item Response Theory
(IRT) as a foundation for Al evaluation using binary responses and Bernoulli loss (Truong et al.
2025} [Hotmann et al., 2025} Kipnis et al., [2025; Madaan et al., 2024} |Polo et al., [2024])). [Polo et al.
(2025) introduce Sloth scaling laws, which model benchmark performance through low-dimensional
latent skills influenced by compute, offering a measurement-theoretic perspective that improves pre-
diction and interpretability across LLM families. [Heineman et al.|(2025) propose a framework based
on signal and noise to quantify benchmark reliability, showing that higher signal-to-noise ratios cor-
relate with more accurate model ranking and lower scaling law prediction error, and introducing
interventions to improve evaluation robustness.

3 METHOD

Item Response Theory (IRT) provides an elegant and parsimonious mathematical framework to
model the natural interaction of LLMs and benchmark questions. We show how, under this frame-
work, various known scaling laws arise naturally and how the framework facilitates efficient, inter-
pretable, and generalizable scaling evaluation. We show the definitions, classical fitting approaches,
and IRT-based fitting approaches of the scaling laws in Table [I]

3.1 ITEM RESPONSE THEORY

Item Response Theory refers to a class of probabilistic latent variable models that explain the rela-
tionship between the test taker’s latent ability, the question’s characteristics (e.g., difficulty), and the
observed response from the test taker to the questions (Baker, 2001; |Van der Linden et al., [2000). A
central model in IRT is the Rasch model (Raschl [1993)), where each test-taker (here, an LLLM) has
an ability parameter #, and each question has a difficulty parameter z. A higher § denotes greater
ability, while a higher z signifies a more difficult question. Let y denote the response of the test taker
to the question, where y = 1 if the response is correct and O otherwise. The probability of a correct
response is modeled by p(y = 1 | 0, z) = 0(0—z), where o is the sigmoid function. Another widely
adopted model in IRT is the 2PL model (Lord, 1952; Birnbaum, |1968)), which adds a discrimination
parameter a to capture how sharply a question differentiates between test-takers of different abilities,
modeling the probability of a correct response as p(y = 1 | 6, z,a) = o(a(f — 2)). In this case, A
higher a indicates that the question is more effective at distinguishing between abilities close to its
difficulty level. The difficulty z and the discrimination a are collectively referred to as the item pa-
rameters. The use of IRT consists of two phases: calibration, which estimates item parameters, and
computerized adaptive testing (CAT), which enables efficient evaluation for new test-takers.

In traditional human testing, the most common approach is to perform calibration on binary re-
sponse data, where each question is scored as either correct or incorrect. A binary response ma-
rix Y € {0,1}M*¥ js collected, where M and N denote the number of test takers and ques-
tions, respectively. Each entry Y;; represents a response of test taker ¢ to question j. With the
binary response matrix, the item parameters can be estimated via either MLE or EM by minimiz-
ing the Bernoulli loss between the IRT-predicted probabilities and the observed binary responses
Lhemoutti = — ity Yooy [Vijlog pij + (1 — Yi;) log(1 — py;)] (Bock & Aitkin, 1981} (Chalmers,
2012; [Wu et al.,[2020).

Unlike human testing, LLM evaluation provides empirical response probabilities, which convey
richer information than binary responses. In the pre-training downstream scenario, the probability of
producing the correct answer among the entire vocabulary, p*°¢@®(Correct Choice), as well as among
the set of multiple-choice options, p"°'®s (Correct Choice), provides a richer signal than accuracy of
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binary responses (Schaeffer et al.,[2024). In the test-time scaling scenario, each question is queried
thousands of times with independent samples to estimate pass@1, defined as the probability that a
single independent sample answers the question correctly. To exploit those probability information
for calibration, we collect the probability matrix P € RM*N 0 < P;; <1 and estimate the item
parameters by minimizing the Beta loss between the IRT-predicted probabilities and the observed
empirical probabilities Lpen = — Zf\il Z;Vﬂ log (BetaPDF(P;;; 115, )), where 1;; = p;; is the
IRT-predicted probability, and ¢ is a precision (inverse variance) parameter. Traditional calibration
on binary data usually demands a large and diverse set of LLMs, which is costly to obtain. By
leveraging empirical response probabilities, reliable calibration can be achieved with fewer test-
takers, thereby significantly lowering the computational cost of querying LLMs.

Given a question bank Q with calibrated item parameters, computerized adaptive testing can effi-
ciently evaluate new test-takers using fewer questions. At query step ¢, given the current estimate
of the test taker’s ability ¢, and the calibrated item parameters, the next question q;t is selected
as the most informative question, guided by an acquisition function such as Fisher information
I (Megjer & Neringl [1999; (Chang, [2015; Magis et al., [2017). This process iterates between the
question selection step ¢;" = argmax, co: I Q""" = Q" \ {¢;'} and the ability estimation step

gitl = arg maxg: 22‘:1 log pnew,;. Ability estimation can also be carried out using binary re-
sponses with a Bernoulli loss or empirical probability responses with a Beta loss.

3.2 PRE-TRAINING DOWNSTREAM ITEM RESPONSE SCALING LAW

The pre-training downstream scaling law characterizes how model performance on a benchmark
scales with the compute used during model pre-training. Performance of model 7 on dataset D (e.g.,
MMLU) with N questions indexed by j is usually quantified by the expected mean accuracy, which
is often approximated with an empirical mean accuracy:

1 & 1 &
E[Acc(i, D)] Z}Q] = ZE[YM] =¥ Zpij‘
Vs o (1
E[Acc(i, D)] =~ Acc(i, D) ZYZJ’ where Y;; ~ Bern(p;;).

The binary variable Y;; is model i’s response to the j-th question (1 for a correct response and 0
otherwise). Classical linear approximation model Acc as a function of the model i’s pretraining
compute FLOP; (Bhagia et al., [2024; let al., [2024} |Gadre et al., | 2024)).

Acc(i,D)~a-o(b-(L; —¢)) + d where L; ~ « - FLOPZ._B +7, 2
where o is the sigmoid function, a, b, ¢, and d are dataset-specific parameters for D, L; is the LLM-

specific cross-entropy loss, and «, 3,y are LLM-specific parameters for model i. None of these
scaling parameters is interpretable.

We propose to model the probability of test taker ¢ correctly answering question j from benchmark D
with IRT. For example, under the Rasch model, this probability is given as p;; = o (0; — z;):

N
E[Acc(i, D)] Zp = Zo(ﬁi —z;) 60; = f(FLOP;), 3)

where §; generalizes across questions that measure the same construct, and z; generalizes across
different LLMs. 6; can be interpreted as the ability of test taker ¢, z; can be interpreted as difficulty
of question j. Modeling pre-training downstream scaling law from Acc gives emergent behavior
and low predictability (Lourie et al. [2025]; |Schaeffer et al. 2024). There is growing interest in
modeling the law from the probability of producing the correct answer among the entire vocabulary,

p¥o°® (Correct Choice), which preserves more information (Schaeffer et al., 2024):
N
DCorrect Choice (Z D Z DCorrect Choice (Z ]) 4)
j 1
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Traditional approaches tend to fit a regression model with LLM-specific and dataset-specific pa-
rameters g: Pcorrect Choice (4, D) = g(FLOP;). We propose to use IRT to model peorrect Choice(i,j)- FOT

example, under the Rasch model, this probability is given as pc(mme(i, 5 =00 — z):
Pcorrect Chmce i D Z 9 - Zj 0, = f(FLOPz) 5

3.3 TEST-TIME ITEM RESPONSE SCALING LAW

Test-time scaling investigates the predictable relationship between a model’s success rates on a
benchmark and the number of independent samples generated during inference (Brown et al., [2024;
Hughes et al.,2024). The model ¢’s success rate on dataset D with N questions indexed by j and H
samples indexed by k is quantified by pass@k(i, D):

N

pass@k(i, D) Jz:lpass@k ,7) 117 jz:ll — (1 — pass@1(i, §))* (6)

where the pass@k(i,j) = 1 if at least one of the k generated responses of model i to g; is cor-
rect, and pass@1(z, j) denote the probability that a single independent sample of model ¢ correctly
answers question g; (Schaeffer et al., 2025). Brown et al|(2024) model the negative log success
rate falls as a power law with the number of independent samples k: pass@k(i, D) ~ exp(—ak~"),
where a, b > 0 are uninterpretable model-specific and benchmark-specific parameters. We propose
to model pass@1 (i, j) using IRT. For example, under the Rasch model, this probability is given by
pass@1(s, j) = pi; = o(60; — z;). Instead of fitting LLM-specific and benchmark-specific constants
a, b, we models pass@k(7, D) as a function of IRT parameters:

pass@k(i,p)z;]i@ (1 — ;) ) NZ(lf 170972]))), )

J=1

where 6; generalizes across questions that measure the same construct, and z; generalizes across
different LLMs, both are interpretable.

4 EXPERIMENTS

We demonstrate the advantages of the downstream item response scaling law in Section [4.1] and of
the test-time item response scaling law in Section

4.1 PRE-TRAINING DOWNSTREAM ITEM RESPONSE SCALING LAW

Experimental Setup We collect two sets of responses across LLMs and datasets. (1) The first
consists of the binary responses from 13 models spanning 3 model families with up to 359 check-
points, evaluated on 13 datasets covering both exact-match and multiple-choice tasks. This yields
a binary response matrix Y"™" The data are queried using the HELM framework at temperature
0 (Liang| 2023). [Truong et al.| (2025) calibrated question difficulties on these datasets using the
Rasch model with binary responses from 42-91 diverse LLMs on the HELM leaderboard. Under
the same query setup, we reuse these calibrated difficulties in our experiments. (2) The second
is obtained from [Schaeffer et al.| (2024) and contains outputs from 5 model families (see [Schaef-
fer et al.| (2024)) for details). For our experiments, we select three out of the 12 multiple-choice
datasets in |Schaeffer et al.[(2024). Each output includes a binary response ¥, a probability response
p¥o® (Correct Choice), and a probability response p“*®s(Correct Choice), resulting in one binary
response matrix Y™™ and two probability response matrices P™"" PV gng pprerein pehoices pe
data are queried using the LM Evaluation Harness at temperature O (Gao et al., 2023)). [Hofmann et al.
(2025) calibrate item parameters on these datasets using the 2PL. model with binary responses from
102 diverse LLMs on the Open LLM Leaderboard (Beeching et al., 2023). Under the same query
setup, we reuse these calibrated item parameters in our experiments.

Binary-IRT CAT and Scaling Law Fit We first apply IRT with a Bernoulli loss (denoted Binary-

IRT) to the binary response matrix Y”™™". Using the calibrated question difficulties, we conduct
CAT on the LLM checkpoints with a question budget of 100. We then compare the 6—FLOP curve



Under review as a conference paper at ICLR 2026

Amber, mmlu Amber, babi ga pythia-12b, mmlu pythia-12b, babi qa

A
N
A
CAT
Ace
CAT
A
X

random subset mean random
full set S set
CATH CATH

full set mean
CATH

Figure 1: Comparison of binary-IRT (red) and Acc curves (light blue) during pre-training on a
subset, across 2 LLMs and 2 datasets. The full-set Acc (dark blue) serves as ground truth. The blue
lines use the left y-axis (Acc), while the red line use the right y-axis (CAT #). Subset binary-IRT
yields lower variance than subset Acc. But both IRT and ground truth Acc show emergent behavior
and exhibit poor predictability.

. AMBER
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Figure 2: Naive scaling behavior of three metrics (Acc, p**®(Correct Choice),
pChoices(Correct Choice)) versus FLOP of AMBER on 3 datasets. Because pY°¢4(Correct Choice)
is often too small to visualize, we also plot its negative log probability. The left y-axis corresponds
to the three metrics, and the right y-axis corresponds to — log p“°¢4®. Shaded regions indicate 43
standard deviations estimated from subset sampling or bootstrap. p*°®(Correct Choice) or its
negative log probability does not show emergent behaviors and exhibits strong predictability.

obtained from CAT with the Acc—FLOP curve computed on a random subset of 100 questions.
The full-set Acc serves as the ground truth. As shown in Figure [} IRT yields lower variance and
closely tracks the ground-truth curve. To assess evaluation stability, we report the total variation
(TV) following [Hofmann et al.| (2025)). For each model ¢ and benchmark D with V' checkpoints,
let z¥(D) denote the measured performance (either Acc or #) at checkpoint v. The normalized

V1| v+l v
total variation is defined as TV (i, D) = -5 - Tzt V"Li @)z} )|
zV (D)—z}(D)
lower step-to-step variance and thus higher evaluation quality. Averaged across all datasets and
models, subset Acc yields TV = 39.66, while subset IRT achieves TV = 26.72, demonstrating its
superior stability. However, neither IRT nor ground truth Acc addresses the challenging questions
of downstream scaling laws: emergence and predictability.

, where lower values indicate

Naive Scaling Behavior of pcorrect choice | Schaeffer et al.| (2024) find that p¥°®(Correct Choice)
retains substantially more information than binary responses, offering a potential avenue to address
emergence and predictability. Using YPe"n - ppretainpvocab g ppretrainpehoices o oxamine the
naive scaling behavior of three metrics: Acc, p¥°®(Correct Choice), and p“"°®s(Correct Choice).
Figure 2] plots these metrics against FLOP of AMBER on three datasets, averaged across the full set
and on a random subset of 50 questions. We observe that p“°¢®(Correct Choice) (or its negative log)
exhibits clear scaling behavior. While p¥°°®(Correct Choice) is too small to be effectively modeled
by IRT on ARC Challenge and HellaSwag, it appears feasible on MMLU. Accordingly, we apply
Beta-IRT to both p¥°®®(Correct Choice) and p“™°is(Correct Choice) for MMLU. Moreover, the
average p ' (Correct Choice) across the 50-question subset of MMLU closely aligns with the full-
set curves with low variance, suggesting that naive probability-based metrics already provide strong
approximations that may be difficult for IRT to improve upon, as we describe next.

Beta-IRT CAT and Scaling Law Fit We apply IRT with a Beta loss (denoted Beta-IRT) to the
probability response matrix PP PO gng pPrerinpehoiees (rqing the calibrated item parameters,
we conduct CAT on the LLM checkpoints with a question budget of 50. In Figure[3] we use the aver-
age pv"cab(Correct Choice) on the full set as the ground truth. We compare the average pcorrect Choice
on the subset, and estimate 6 using Beta-IRT CAT on probability responses with the budget. We
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Figure 3: Scaling behavior of three model families on MMLU Anatomy. The blue lines use the left
y-axis (Mean score), while the red lines use the right y-axis (IRT 6). Beta-IRT effectively captures
PCorrect Choice» Which is more predictable and less emergent.

observe that both the # estimated from Beta-IRT CAT and the average pcorrect Choice €Xhibit smooth
increasing trends that closely align with the ground truth. This suggests that Beta-IRT effectively
captures Pcorrect Choices Which is more predictable and less emergent, making it a suitable candidate
for modeling downstream scaling laws. We note, however, that while subset Beta-IRT does not sur-
pass the subset average of Pcorrect Choice 11 €Stimation accuracy or stability, it performs comparably
and remains valuable for its interpretability and generalizability, as we describe next.

IRT Ability Estimates Generalize across Questions Mea-

suring the same Construct We use the scaling performance 10
of Pythia-12B on WikiFact (from Y*"*") as a demonstration. ~ **
The scaling law is characterized by the relationship between gzj
Acc and the training FLOP of the 154 Pythia-12B checkpoints. '
We split the questions into an easy subset for training and a dif-
ficult subset for testing according to the calibrated difficulties.
For the IRT model, we first estimate the model’s ability param-

—— Train GT
— TestGT
=== Train IRT (MSE=0.0017)
== Test IRT (MSE=0.0007)

0.2

0.0
10

FLOP

eter # on the training set using pre-calibrated difficulties; we
then model 6§ as a function of FLOP via Kernel Ridge Regres-
sion: @ = fxrr (FLOP). Finally, we infer the test set accuracy
by combining fxrr (FLOP) with the pre-calibrated test set dif-
ficulties. As shown in Figure[d] the IRT model closely matches
the ground truth curve on both the training and test sets. This
shows that 6 generalizes across questions with different diffi-
culties but measuring the same construct, while the traditional
scaling law remains test set-specific. We replicate this experi-

ment across 13 benchmarks and 13 models from Y™"™"  Fig-

Figure 4: Pythia-12B checkpoionts
on WikiFact. Acc versus FLOP on
the easy (train, blue) and difficult
(test, red) question splits. Solid:
GT scaling curves; dotted: IRT
curves. The 6 estimated from the
easy question set generalizes to the
hard question set, accurately pre-
dicting the scaling behavior on the
hard question set, while the tradi-

tional approach fits dataset-specific

ure [/| presents the difference in test mean squared error (MSE)
scaling parameters.

with ground truth between the classical scaling law (which fits
on the train ground truth and stays the same for the test set)
and the item response scaling law (which generalizes to the
test set). From the consistent positive MSE difference, we conclude that the item response scaling
law demonstrates superior generalization across questions measuring the same construct.

This is a core property of IRT known in psychology as test-set invariance, meaning that ability
estimates remain robust across subsets of varying difficulty. This feature is particularly important
in the pre-training setting. For example, in an industrial setting where training and evaluation are
handled by separate teams, increasing model ability with more compute causes CAT to adaptively
choose more difficult questions for evaluation (Hofmann et al., 2025). By doing so, CAT ensures
that different subsets are presented to the model, which can reduce contamination and lead to more
reliable evaluation.

4.2 TEST-TIME ITEM RESPONSE SCALING LAW

Experimental Setup We collect two probability matrices, denoted as P{"™® and Pys"i™. The
matrix Pj"™ contains the responses of 8 LLMs on 552 questions drawn from 6 multiple-choice
benchmarks. For each entry, the empirical pass@1 is estimated by averaging over 10, 000 samples,
with queries performed under a few-shot setting and temperature 1. The matrix Py contains
the responses of 12 latest LLMs on 120 questions from 4 latest benchmarks, including both exact
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Figure 5: Consistency between (1) IRT-predicted probability with 6 estimated from 50 or 30 ques-
tions and 50 samples (x-axis), and (2) pass@1 estimated from 10,000 or 2,500 samples (y-axis).
Each point represents a question in the benchmark. From left to right, the four subplots are training
LLM in Piestime test LLM in PfUme training LLM in Ptmeand test LLM in Pistime, [RT-
predicted probabilities correlate closely with pass@1.

match and multiple-choice tasks. Here, the empirical pass@1 is estimated by averaging over 2, 500
samples, with queries performed without few-shot examples but using chain-of-thought prompting
at temperature 0.6.

Beta-IRT Calibration We adopt the Rasch model for both matrices, leaving out 4 LLMs for
CAT. Question difficulty parameters z are calibrated on the remaining LLMs using the Beta loss.
We report two correlation metrics for calibration performance: the Spearman correlation between
the estimated difficulty z and the average empirical pass@1 of each question across the LLMs used
for calibration, denoted as py.in; and the Spearman correlation between 2z and the average empirical
pass@1 across the LLMs left out for CAT, denoted as pieq;. For P{*"™, we obtain py,i, = 0.97 and
Prest = 0.80. For Py we obtain pain = 0.99 and pies, = 0.95.

Although leaderboard-calibrated difficulties are publicly available (Hofmann et al.l 2025} Truong
et al., 2025)), we recalibrate question difficulties on the test-time probability matrices, because test-
time scaling is typically conducted with a positive temperature to enable diverse sampling, whereas
leaderboard evaluations are usually performed at temperature 0 for reproducibility. Our analysis
shows that difficulties obtained under different evaluation setups can sometimes exhibit low corre-
lation. For Pieime the questions overlap with those used in Truong et al.[(2025). In Truong et al.
(2025), question difficulties are calibrated from a binary response matrix of 42-91 test takers col-
lected from the HELM leaderboard (Liang, [2023)). We compare the estimated difficulties between
our setting and theirs: across the six benchmarks, three exhibit high correlation while the other three
do not, likely due to differences in evaluation setup (Figure[8). These results suggest there is hope
to transfer difficulty estimates calibrated from leaderboards to test-time scaling scenarios, but they
are not always reliable.

Beta-IRT CAT With calibrated question difficulties, we perform CAT using the Beta loss on both
the LLMs included in calibration and those held out, with a sample budget of 50. For Piestime e
set the question budget to 50, and for Pi"ime we set it to 30. Given the estimated LLM ability 6, we
compute the correlation between the IRT-predicted probability o(f — z) and the empirical pass@1
estimated from all available samples. Figure [5|presents four subplots, corresponding to one training
(included in calibration) and one test (held out) LLM on each of P{*"™e and Pi*"™e, We report
the Spearman correlation averaged across LLMs and datasets between IRT-predicted probability and
pass@l: pPl = 0.70, pL} = 0.53,pF2 = 0.92, pE2 = 0.88. We observe that the IRT-predicted
probabilities correlate closely with pass@1. However, when pass@1 is exactly zero, the IRT model
fails to produce an exact zero probability, which introduces discrepancies in the law fitting process,
as we describe next.

Scaling Law Fit We report 3 law curves on pass@k or —log pass@k versus number of samples
k in Figure O} (1) the full unbiased (GT) curve serves as the ground truth. In this case, pass@k is
estimated from all available samples (10,000 or 2,500 samples) and all available questions using the

unbiased and numerically stable estimator of |Chen et al.|(2021): pas@k\(i7 j)=1- (H ;C”’ ) / (1};1 ),
where H is the total number of available samples, c;; is the number of correct samples of LLM

i on question g; among those samples. (2) In the sub pass@1 curve, pass@k is estimated from

subset questions (50 or 30 questions) and subset samples (50 samples): pas@k\(i, J)=E;1-(1—-
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ﬁij)’“}, where p;; = ¢;/H. (3) In the sub beta-IRT curve, 2 is estimated from calibration, and 0 is
estimated from subset Ele\stions (50 or 30 questions) and subset samples (50 samples). pass@k is
then estimated as pass@k(i, ) = E;[1 — (1 — pi;)*], where p;; = o(f — 2). In the left half of
Figure [0] we observe that the IRT law curves tend to achieve pass@k = 1 while the ground truth
curves do not. This arises because IRT probabilities never reach exact zero: both § and z are typically
modeled as approximately normal, and even a large negative difference such as § — z = —6 yields
o(—6) =~ 0.0025. This behavior can be interpreted as an inherent limitation of IRT; one possible
extension would be to introduce a prior that induces a binning effect. We also note that the ground-
truth curves may be resolution-limited due to finite samples: if an LLM never answers a question
correctly in the limited samples, the ground truth estimates become exactly zero.

In psychometrics, questions that are never correctly answered are typically discarded because they
provide no discriminatory power (Lord, 1980). Following this principle, we filter out questions with
pass@1 < 0.01 and show empirically that this improves predictive reliability of IRT. After filtering,
we obtain the right half of Figure [9] where the sub beta-IRT curve provides a closer estimate than
the sub pass@1 curve under a limited query budget. We report the mean absolute errors (MAEs) of
— log pass@k between the subset estimates and the ground-truth estimates for both IRT and pass@1.
To highlight the relative advantage, we compute MAE,ss@1 — MAEpe,.irt and visualize the results
in Figure where positive values (red) indicate superiority of IRT. Across nearly all LLMs and
datasets, IRT achieves more reliable estimates of test-time scaling laws in an efficient manner, while
being interpretable and generalizable.

IRT Ability Estimates Generalize across
Questions Measuring the same Construct
We use the scaling performance of Qwen3-4B
on Global MMLU Lite as a demonstration. We
split the questions into an easy subset for train-
ing and a difficult subset for testing according
to the calibrated difficulties. For the IRT, we
first estimate the model’s ability parameter 6
on the training set using pre-calibrated difficul- T

ties; we then combine 6 with the pre-calibrated .
difficulties of the test set to predict the proba- Figure 6: Qwen3-4B on Global MMLU Lite.

bility of correct responses. As shown in Fig- Left: passQk versus & on the easy (train, blue)
ure [6] (left), the IRT curves closely match the and difficult (test, red) question splits. Solid:

ground truth curves on both the training and test GT scaling curves; dotted: IRT curves. Right:
sets. This shows that § generalizes across ques- Pass@1 as a function of question difficulty 2. The

tions with different difficulties but measuring LM ability 6 estimated from the easy set gener-
the same construct, while the traditional scal- alizes effectively to the hard set, accurately pre-
ing law remains test set-specific. In Figure [f] dicting pass@l and giving accurate estimation for
(right), we visualize pass@1 as a function of pass@k. s.cahng on more dlfﬁ(.:ult questions, Whlle
question difficulty z. The LLM ability 0 es- the traditional approach remains dataset-specific.
timated generalizes effectively to the test set,

producing a scaling curve that accurately predicts pass@1 on more difficult questions.

5 DISCUSSION, LIMITATIONS, AND FUTURE WORK

In the scaling laws literature, pre-training downstream curves are typically fit only to final check-
points; by contrast, we fit to intermediate checkpoints of pretrained models. Our estimation of FLOP
may be inaccurate because learning signals are nonuniform over training (e.g. due to warmup and
decay schedules). Future work includes introducing a prior into IRT that induces a binning effect in
test-time settings, fitting a shared latent ability that generalizes across benchmarks under the hypoth-
esis that most benchmarks measure the ability to autoregress text (Truong et al., 2025} Kipnis et al.,
2023)), exploring alternative probabilistic models beyond IRT, extending to other scaling laws (e.g.,
observational scaling law (Ruan et al.l|2024), pre-training validation-loss scaling law (Kaplan et al.,
2020), in-context scaling laws (Arora et al.,|2025)), and extending IRT to polytomous assessments
(Ostini & Nering}, [2006).
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Difference in Test MSE (Linear — IRT)
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Figure 7: Heatmap of the difference in test MSE (Classic — IRT) across 13 benchmarks (rows) and
13 LLMs (columns) in Y"™", Consistent positive (red) values indicate that the classical scaling
law incurs higher error than the item response scaling law on the test set, demonstrating the latter’s
superior generalization across question subsets with the same measurement objective but differing
in difficulty.

Figure 8: Consistency of question difficulty estimates between our calibration (z-axis) and
(y-axis). Each point represents a question. Across the six benchmarks, three exhibit
high correlation while the other three do not. There is hope to transfer difficulty estimates calibrated
from leaderboards (temperature = 0) to test-time scaling scenarios (temperature > 0), but they are
not always reliable.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) as general-purpose assistive tools for two purposes: (1)
polishing the writing of the paper, and (2) providing coding assistance. In all cases, the outputs
generated by LLMs were carefully reviewed, verified, and modified by the authors before inclusion.
The authors take full responsibility for all content presented in this paper.

B ADDITIONAL FIGURES

B.1 PRE-TRAINING DOWNSTREAM ITEM RESPONSE SCALING LAW
B.2 TEST-TIME ITEM RESPONSE SCALING LAW
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Figure 9: Left 2 columns: pass@k or —log pass@k versus number of samples k before filtering.
Right 2 columns: pass@k or —log pass@k versus number of samples & after filtering. Row 1 to 4:
a training LLM in PlSWme 3 test LLM in P{t™ 3 training LLM in P$™ and a test LLM in
Pgstime The MAEs of —log pass@k between estimates on subset questions and subset samples and
GT are reported in subplot titles. After filtering out questions with low pass@1, IRT achieves more
reliable estimates of test-time scaling laws than traditional approaches with limited budget.
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Across nearly all LLMs and datasets, IRT achieves more reliable estimates of test-time scaling laws

in an efficient manner.
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