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Abstract— Due to its great capability in manipulating electromagnetic (EM) waves, metasur-
faces have broad application prospects. Conventional approaches for metasurfaces design demand
huge amounts of full-wave EM simulations to obtain the optimal geometric parameter values,
leading to a CPU-intensive and time-consuming optimization process. Parametric modeling is an
important part of achieving fast design optimization of microwave components. Recently, an ad-
vanced technique which combines neural networks and pole-residue-based transfer function (i.e.,
the neuro-TF approach) shows great potential in parametric modeling, which is so far mostly
applied to microwave passive components. However, how to apply the neuro-TF method to para-
metric modeling and fast design of metasurfaces remains an open project. The main contribution
in this paper is the development of the neuro-TF model which provides accurate and fast pre-
diction of the EM behavior of a metasurface and thus greatly accelerate the design optimization
process. The model can then be utilized to achieve fast design of metasurfaces-based components
such as microwave absorbers. A frequency-selected microwave absorber is used as an example to
demonstrate the superior performance of the neuro-TF approach.

1. INTRODUCTION

Metasurfaces have made significant advancement over the past decade and are considered to be one
of the most promising technologies for next-generation communication systems [1]. In terms of fast
metasurface design, parametric modeling is a crucial but challenging task, which is conventionally
fulfilled in commercial EM simulation software demanding a large number of full-wave electromag-
netic (EM) simulations of repetitively changing geometrical parameter values [2, 3]. As a result,
the mission is usually finished at the cost of tremendous time, computer memory and engineers’
energy. To solve the above problems, machine learning (ML)-based methods prove available to fast
and intelligent metasurface design. The neuro-transfer function (neuro-TF) method is one of the
most powerful tools [4, 5], in which the EM response of microwave structures versus frequency is
represented by transfer functions of the pole-residue format. Recent years have witnessed successful
applications of neuro-TF to parametric modeling and yield-driven design of microwave passive com-
ponents [6–8], but the usage of neuro-TF on the parametric modeling of metasurfaces is still a blank.
In this paper, successful completion of the neuro-TF-based parametric modeling of metasurfaces is
the main contribution. The trained neuro-TF model can provide fast and accurate predictions of
the EM behavior of metasurfaces, thereby greatly increasing the efficiency in metasurface design.

In this paper, we first review the neuro-TF approach combining the neural network technique and
the pole-residue-based transfer function. Then, a neuro-TF model is trained for fast prediction of
the EM responses of the metasurface, which is further implemented for the design of a metasurfaces-
based frequency-selected microwave absorber. Finally, the performance comparison between neuro-
TF and traditional approach is provided. It has been demonstrated that the neuro-TF method
achieves the superior performances in both tasks, saving a lot of CPU time and at the same time
achieving satisfying accuracy.

2. INTRODUCTION TO THE NEURO-TF APPROACH

In this section, we will provide a brief introduction to the pole-residue-based neuro-TF Model
formulation and its training process.

As depicted in Fig. 1, the pole-residue-based neuro-TF model comprises neural networks and
a pole-residue-based transfer function, which is employed for the computation of the absorbance
of the metafurface. The inputs to the model are represented by the vector x comprising of the
geometrical variables along with the frequency ω. The output of the model is denoted by y, which
specifically signifies the absorbance of the metasurface corresponding to x and ω.

Let the frequency response of the metasurfae (i.e., S11) be a function of poles/residues, the
definition of which is established by means of a transfer function that relies on poles and residues
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Figure 1: Structure of the pole-residue-based neuro-TF model.

and is expressed in the subsequent manner:

H(jω) =
N∑

i=1

ri

jω − pi
(1)

where pi and ri represent the poles and residues of the transfer function respectively, and N
represents the order of the transfer function.

A two-stage training process is proposed whereby, in the first stage, separate neural networks
are preliminarily trained to learn the nonlinear relationship between the poles and residues and the
geometrical parameters. The training data for this stage comprises of (x, pi) and (x, ri) respectively,
i.e., samples of geometrical parameters as model inputs and poles/residues as model outputs. The
outputs of the neural network for poles (residues) are represented as pNN (rNN ) with corresponding
neural network weights denoted by wp (wr). A small number of hidden neurons in the neural
networks can be employed by making use of relaxed error criteria [4].

During the second stage, model refinement is conducted. The training data utilized for this phase
consists of samples of geometrical parameters as model inputs and EM-simulated absorbances as
model outputs. The model itself comprises the pole-residue-based transfer function of (1), alongside
neural networks whose initial values are the optimal solutions from the preliminary training. The
refinement process encompasses both model training and testing. The training aspect aims to
optimize the weights within the neural networks to minimize the error function:

ETr
(wp,wr) =

1
2ns

∑

k∈Tr

∑

i∈Ω

|y (pNN (xk,wp) , rNN (xk,wr) , si)− dk,i|2 (2)

where ns is the total number of training samples. The index set Tr pertains to the training data
of diverse geometrical parameters, while k serves as the index that specifies the k-th sample of
training data. The index set Ω pertains to the frequency samples. The output of the entire model
is designated by y, and ultimately depends on the geometrical parameters xk, frequency si, and
neural network weights wp and wr.

After a certain number of iterations, the training process is halted, and an unused independent
set of testing data is utilized to evaluate the quality of the trained model. The training and testing
errors are computed as the difference between the model response and the training/testing data.
If both the training and testing errors are sufficiently low, the refinement process of the model will
terminate, indicating that the model is suitable for high-level metasurface design applications.

3. EXAMPLES

In this part, the fast design for a metasurfaces-based frequency-selected microwave absorber is
carried out using the neuro-TF method, with the unit cell shown in Fig. 2. The unit cell has a
length of a = 200 mm along the x-axis and a height of 3 mm along z-axis.

3.1. Parametric Modeling of a Microwave Absorber With two Ribbons
The training and testing data ranges for the two distinct cases are specified in Table 1. We scale and
shift the frequency range from 2 GHz–4 GHz to 0.9 GHz–1.1 GHz during the vector fitting progress
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Figure 2: EM structure of the unit cell of the microwave absorber.

and set the order N = 8, which is the maximum order. We compare the modeling performance
of the neuro-TF method with pure neural networks (MLP3, also referred to as the data-driven
method), as shown in Table 1. From the table, one can see that the neuro-TF method achieves
better modeling accuracy than the data-driven method for both cases. We obtain the neuro-TF
model outputs in Case 2 at one geometrical testing sample, and compare them with CST-simulated
responses and MLP3 predictions, as illustrated in Fig. 3. We can see that the neuro-TF model
outputs match the CST-simulated responses better than the pure neural network model outputs.

Table 1: Definition of training and testing data for the parametric modeling of the microwave absorber.

Case1

(small

range)

Geometrical

Variables

Training Data Testing Data Model Accuracy

Min Max Step Min Max Step

MLP3 neuro-TF

Training

Error

Testing

Error

Training

Error

Testing

Error

L1(mm) 16 18 0.2 16.1 17.9 0.2

1.444% 1.2844% 0.7513% 0.8259%L2(mm) 16 18 0.2 16.1 17.9 0.2

d1(mm) 10 11 0.2 10.1 0.2 10.9

Case2

(large

range)

Geometrical

Variables
Min Max Step Min Max Step

MLP3 neuro-TF

Training

Error

Testing

Error

Training

Error

Testing

Error

L1(mm) 13 30 1 13.5 29.5 1

7.8417% 7.618% 4.9497% 4.1678%L2(mm) 13 30 1 13.5 29.5 1

d1(mm) 1 171 5 3 168 5

Figure 3: Comparison between the responses predicted by the neuro-TF model and the CST simulated data
at the testing sample [L1 L2 d1] = [16 22 80]T (mm).

3.2. Neuro-TF-Based Design Optimization of a Frequency-Selected Microwave Absorber
Subsequently, the trained neuro-TF model is utilized to the design of a metasurfaces-based frequency-
selected absorber, with design specifications: absorbance greater than 0.7 at specified frequencies
of 3.17 GHz and 3.41 GHz. The initial geometrical parameter values are given as [L1 L2 d1] =
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[17.2 16.8 10.5]T (mm), and the optimal geometric parameter values for the absorber obtained are
[L1 L2 d1] = [16.1287 17.9641 10.0]T (mm). Fig. 4 shows the CST-simulated responses at the
initial and optimal designs, demonstrating that the optimal design can satisfy the desired design
specification. It can be observed from Fig. 4 that the absorbance predicted by the neuro-TF model
exhibits remarkable conformity with the EM data. To facilitate a comparative evaluation, we lever-
aged CST to undertake direct EM optimization of the frequency-selected absorber using identical
initial design parameter values and design specifications. The neuro-TF-based optimization was
achieved in a mere 0.134 seconds, while the CST optimization costs 1h 10min. The more we re-use
the neuro-TF model, the more time savings will be achieved.

(a) (b)

Figure 4: Comparison between the absorbances in the magnitude of neuro-TF model and CST simula-
tion. (a) Before optimization [L1 L2 d1] = [17.2 16.8 10.5]T (mm). (b) After optimization [L1 L2 d1] =
[16.1287 17.9641 11.0]T (mm).

4. CONCLUSION

The use of the neuro-TF model in the parametric modeling of metasurfaces has resulted in signifi-
cant benefits, including fast and accurate predictions of electromagnetic (EM) responses. This has
enabled a faster design process, addressing the disadvantages of traditional methods that are time-
consuming and CPU-intensive. The trained model has been utilized for the purpose of expediting
metasurface design optimization of frequency-selected absorbers. This approach has presented pos-
sibilities for the progression of advanced intelligent physics-driven machine learning (ML) techniques
within the field of metasurface design.
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