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Abstract

Benchmarks are pivotal in driving progress in large language models, yet ambigu-
ous questions, incorrect answer keys, and grading issues frequently undermine their
reliability. Manually identifying and fixing issues among thousands of benchmark
questions is not only infeasible but also a critical bottleneck for reliable evalua-
tion. In this work, we introduce a scalable, theory-driven framework for systematic
benchmark revision that leverages psychometric tools to flag problematic questions
requiring expert review. We demonstrate that the No Free Lunch theorem applies
directly to benchmark quality assessment: no detector can excel across all anomaly
patterns, and effective detection requires prior anomaly knowledge. Furthermore,
recognizing the high cost of LLM evaluations and the limited diversity of avail-
able LLMs, we assess each tool’s sensitivity to the number of model responses.
Finally, across nine widely used benchmarks, our signals guide expert review to
identify flawed questions with up to 84% precision, offering an efficient, scalable
framework for systematic benchmark revision.

1 Introduction

The performance of generative models is often measured by benchmarks [Hardy et al., 2025, Orr
and Kang, 2024]. Community-wide competitions and leaderboards for benchmarks such as GSM8K
and MMLU [Cobbe et al/, 2021, Hendrycks et al., 2020] not only drive advances in large language
models (LLMs) but also directly shape where researchers and companies invest compute and engi-
neering effort. The validity of conclusions drawn from such benchmarks depends on high-quality
benchmark questions: unambiguous, correctly labeled, and correctly graded. Unfortunately, prior
research has inspected the reliability of widely used benchmarks, where problematic questions are
not uncommon, with error rates peaking at approximately 5%—=88 questions in total—on the popular
GSMS8K benchmark [Vendrow et all), 2025]. Flaws in benchmarks can distort rankings and hinder
reliable performance measurement.

Addressing these challenges requires systematic benchmark revision. Unfortunately, manually re-
viewing every question in modern benchmarks is prohibitively expensive because they often contain
thousands of questions spanning diverse domains, requiring highly specialized knowledge to assess
their correctness. For example, MMLU has 57 domains ranging from college chemistry to philoso-
phy and over 14, 000 questions [Hendrycks et al,, 2020]. Ensuring the validity of each question is
expensive because it typically requires extensive efforts from human experts. Consequently, most
benchmarks are rarely revised after release, with problematic questions going undetected. There is a
need for a method that assists human inspectors by flagging problematic questions. These methods
are commonly studied in anomaly detection literature.

Anomaly detection aims to identify data points that deviate from a defined notion of normality. Re-
cent work on the “No Free Lunch” theorem for anomaly detection has established that anomaly detec-
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tion suffers from a fundamental limitation: there exists no universally optimal detection algorithm
across all possible distributions of normal and anomalous data [Reiss et al), 2023, Hoshen, 2023,
Calikus et al), 2020]. This implies that no anomaly detection algorithm can universally detect prob-
lematic questions without incorporating prior knowledge about what is considered a “valid” question.

The question of “what constitutes a valid ques-
tion for assessment?” has long been studied LLM Behaviors ﬂ%
in validity theory, a subfield of psychometrics on Benchmarks

that offers a formal framework for evaluating
whether test items support meaningful interpre-
tations of performance. This perspective is
particularly well-suited for Al benchmark as-
sessment because traditional anomaly detection
methods often treat validity as a binary statis-
tical aberration—flagging outliers without con-
sidering whether the item meaningfully con-
tributes to the intended evaluation goal. In con-
trast, validity theory emphasizes that validity is
not a property of the item itself, but of the inter-
pretation and use of the resulting scores [Amer-
ican Educational Research Association et all,
2014]. Rather than relying solely on statisti-
cal deviation, as in prior work [[Vendrow et al,, :
2025], we adopt this more nuanced view: we 8§ ==
assess whether item behavior aligns with ex-
pectations under a well-specified measurement
model, given the intended use of the bench-
mark. This principled grounding enables more
interpretable, extensible, and purpose-driven
anomaly detection for Al evaluation.

Item Quality Index
L]

Inspector

Figure 1: Method overview. A binary response
matrix captures the outcomes of LLMs on bench-
mark questions (blue = correct, red = incorrect,
white = missing). This matrix is fed into statistical
models, which assign each question an anomaly
score. In the visualization, darker green circles
To achieve this, we leverage four psychometric denote a lower score of being problematic, while
tools that encode structural assumptions about darker red circles denote a higher score. Questions
question behavior: The tetrachoric correlation whose scores exceed a predefined threshold (out-
intuitively tells us how often two questions are lined in orange) are flagged as candidates and then
answered correctly by the same models, so un- reviewed by human inspectors for revision.
usually low or negative values flag questions

that don’t fit the shared trait yan Everdingen

[1976]. The scalability coefficient shows how consistently each question ranks models by abil-
ity, highlighting questions that break the expected order of stronger models outperforming weaker
ones Sijtsma and Molenaar [2002]. Cronbach’s alpha measures the overall agreement among all
questions, and observing the change in alpha when a question is removed reveals that the question
undermines consistency |Allen and Yen [[1979b], Crocker and Algina [[1986]. The IRT discrimina-
tion parameter captures how sharply a question separates stronger from weaker models, with low or
negative discrimination indicating a question that fails to distinguish ability Birnbaum [[1968].

Applying psychometric techniques to Al benchmarks presents unique challenges, particularly due to
the limited number and homogeneity of model responses available per question. In typical human
assessments, response data is drawn from thousands to tens of thousands of test-takers spanning di-
verse demographic and cognitive backgrounds, which provides rich variation and statistical power
for question-level analysis. In contrast, Al benchmark evaluations often rely on fewer than 100 large
language models, many of which share similar training data, architectures, and decoding strategies
Liang [2023]. This lack of diversity reduces the effective sample size and introduces correlations
that can obscure subtle validity violations. To better understand these limitations, we conduct simu-
lation studies to estimate the minimum number of diverse model responses required to reliably detect
anomalous questions under varying assumptions.

To demonstrate the practical effectiveness of our framework, we apply it to nine widely used bench-
marks [Zeng et al., 2024, Mihaylov et al., 2018, Jin et al., 2021/, Cobbe et al., 2021, Hendrycks et al.,
2020], many of which have not undergone prior systematic revision. We show that with the help
of our anomaly detection signal, human experts successfully identify problematic questions, with
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manual inspection confirming that up to 84% of the flagged questions contain clear flaws (e.g., am-
biguous wording, mislabeled answers, or grading issues). These results highlight the potential of our
framework to substantially improve the efficiency and scalability of benchmark revision.

In summary, our contributions are:

* Validity theory-driven anomaly-detection pipeline: We introduce a framework that leverages
psychometric analyses to flag flawed benchmark questions, empirically demonstrating a No-Free-
Lunch limitation—no single detector excels across all anomaly types—and characterizing how
detection performance scales with the number of LLM responses.

 Practical benchmark revision: We apply our framework to nine widely used Al benchmarks,
using the anomaly signal to guide domain experts through systematic revision, achieving up to
84% precision in identifying truly flawed questions.

2 Related Work

Anomaly Detection and No-Free-Lunch Theorem Benchmark flaws are similar to outliers in
anomaly detection: observations that significantly deviate from the norm [Pang et al), 2021]]. AD-
Bench compares 30 methods on 57 datasets, highlighting the impact of supervision, anomaly types,
and data corruptions [Han et al., 2022]. NLP-ADBench and AD-LLM employ embedding-based
detectors and zero-shot LLMs for text anomalies [Li et al., 2024, [Yang et al., 2024|], while AD-NLP
underscores the need for diverse corpora [Bejan et al., 2023]. Surveys categorize density, proxim-
ity, reconstruction, and classification approaches [Li et al., 2023]], AUM tracks training dynamics
to detect mislabeled examples [Pleiss et all, 202(], and explainable methods attribute anomolies to
features for targeted corrections [Sipple and Youssef, 2022]. The No-Free-Lunch (NFL) theorems,
originally formalized by Wolpert and Macready [[1997], show that averaged over all cost functions
every optimization algorithm performs equally. In supervised learning, they imply that without task-
specific biases no learner outperforms another [Wolpert, 1996]. Recent work extends NFL to anomaly
detection: Reiss et al| [2023] find that overly complex representations can hurt detection efficacy,
and Hoshen [2023] highlight inherent limits on detector scalability. Similarly, Calikus et al) [2020]
demonstrate there is no universal streaming anomaly detector, motivating adaptable pipelines.

Al Benchmark Revision Mislabeled test samples are found across ten popular benchmarks, poten-
tially altering model rankings [Northcutt et al), 2021]]. In NLP and QA benchmarks, under-specified
or ambiguous questions persist in datasets [Min et al., 202(], and adversarial filtering has been used to
reduce bias in schema and NLI benchmarks [Sakaguchi et al., 2019, Nie et al., 2019]. Model-driven
curation methods flag errors via ensemble disagreement and high-confidence predictions [[Toneva
et al., 2020, Vendrow et al., 2025], and recent work shows that LLLMs can detect inconsistencies and
suggest textual corrections [Yang et al., 2023].

Psychometric Methods for Benchmark Revision Psychometrics has a long history helping refine
test questions [Crocker and Algina, 2003, Furr, 2021, |Allen and Yen, 1979a]. In classical test theory,
quality is gauged by difficulty and discrimination [Allen and Yen, 19794] and by internal consistency
via Cronbach’s « [Cronbach, [1951|, Tavakol and Dennick|, 2011], with McDonald’s w; [McDonald,
1999] and Guttman’s Ag [Guttman, 1945] offering refined reliability bounds. Item Response Theory
models item parameters to flag misfit [Hambleton et al., [1991], and nonparametric Mokken scaling
assesses unidimensionality without distributional assumptions [Mokken, 1971, Sijtsma and der Ark,
2002]. Differential Item Functioning detects subgroup bias [Holland and Wainer, 1993].

3 Validity Theoretic Anomality Detection

We assume we have a benchmark consisting of N questions with known correct answers, and we
have access to the results of these questions on a set of M test takers, which are language models in
our case. From these results, we can form an M x N response matrix X with binary entries X;; = 1
if question ¢ was answered correctly by test taker j (and 0 otherwise). Based on this response matrix,
we use four psychometric tools to compute quality indices for each question, reflecting the extent to
which each question deviates from an assumed validity-theoretic data-generating process. A brief
overview of those four tools is shown in Figure [J.
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Quantifies how performance on one question predicts performance on another by estimating

Tetrachoric Correlation the Pearson correlation between two unobserved continuous traits with binary outcomes.

Quantifies how well a question’s responses co-vary with the total rest-score by taking the ratio
of its observed covariance with the maximum possible covariance.

Item Scalability Coeff

Cronbach’s alpha quantifies overall internal consistency, “alpha if question deleted” shows if

Reliability Metrics : e :
removing an questlon increases that con5|stency.

The discrimination parameter in 2PL IRT quantifies how sharply the probability of a correct

IRT Discrimination . i h i -
response rises with increasing ability, signals anomaly when negative.

Figure 2: Overview of four psychometric tools used in our framework.

Tetrachoric Correlation Tetrachoric correlation measures how likely it is that test takers who get
question ¢ correct also tend to get question j correct, under the assumption that both questions re-
flect the same underlying continuous trait [Gulliksen, 1950, Lord and Novick, [1968, van Everdingen,
1976]. A high correlation suggests strong alignment between questions, likely testing similar knowl-
edge or skills, and may indicate redundancy. In contrast, unusually low or negative correlations serve
as an anomaly signal, implying that the question does not conform to the assumed latent structure.
Formally, given two binary variables X;, X; € {0, 1} representing correctness on questions ¢ and j,
tetrachoric correlation estimates the underlying Pearson correlation p;; between two latent continu-
ous variables Z;, Z; assumed to follow a standard bivariate normal distribution with correlation p;;.
The observed binary outcomes are generated by thresholding: X; = I(Z; > ), X; = (Z; > 1;),
where I(-) is the indicator function and 7;, 7; are thresholds determined by the marginal proportions
7 =0 1(p(X; = 0)),7; = @1 (p(X; = 0)), with ! the standard normal quantile function.
The tetrachoric correlation p;; is the value satisfying ®o(7;, 75; pi;) = poo, Where ®o(+, -5 p) is the
CDF of the standard bivariate normal distribution with correlation p, and poy = p(X; = 0, X; = 0)
is the observed joint probability. Since no closed-form solution exists, p;; is estimated numerically.

Item Scalability Coefficient Intuitively, the scalability coefficient evaluates how consistently each
question aligns with the overall performance pattern of test takers [Sijtsma and Molenaar, 2002]. A
question with high scalability tends to be answered correctly by stronger test takers and incorrectly by
weaker ones, reinforcing a consistent ordering of ability across the benchmark. Conversely, questions
with low or negative scalability deviate from this pattern. For instance, they might be answered
correctly more often by weaker models or show no meaningful relationship to overall performance.
Formally, scalability is quantified by Loevinger’s H coefficient [Loevinger, 1948], computed for each
question and for the test as a whole. For a question 4, its individual scalability coefficient H; is defined
as:
> i Hij o Pij — PiPj

N-1 " 7Y min{p;(1—p;),p;(1—pi)}
where H;; is the pairwise scalability between questions 7 and j, p; is the marginal probability of a
correct response to question ¢, p; is the marginal probability of a correct response to question 5, and
pij is the joint probability that both 7 and j are answered correctly.

H; =

Reliability Metrics Reliability metrics are used to compute the overall internal consistency of the
benchmark. A high reliability means the questions generally agree in assessing performance; a low
reliability indicates high unexplained variance. We conduct a question deletion analysis: for each
question 7, we recompute the reliability of the test with question 7 removed |Allen and Yen [[1979b],
Crocker and Algina [[1986]. If removing a question substantially increases the reliability, it suggests
that the question was degrading the consistency of the test. Formally, Cronbach’s « is defined by
%, where [V is the number of questions, ¢ is the average inter-question covariance, and v is
the average question variance. To compute “alpha if question deleted” for question ¢, recompute ¢
and v after removing the question, and recalculate a—an increase in this revised coefficient indicates
that question ¢ had been lowering internal consistency.

Item Response Theory Discrimination Coefficient Under the two-parameter logistic (2PL) IRT
framework, each question 7 is characterized by a discrimination parameter a; [Birnbaum, 1968]. In-
tuitively, a, reflects how sharply performance on question i relates to overall ability: a large positive
a; means that higher-ability test takers are much more likely to answer it correctly than lower-ability
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ones. Conversely, a negative a; implies that stronger test takers tend to answer the question incor-
rectly relative to weaker ones, signaling a problematic question. Formally, the 2PL model specifies:
p(Xi; =1180;) = o(a;(0; —b;)), where o is logistic function and X;; € {0,1} is correctness of
test taker j on question ¢, 0 is latent ability, b; is the difficulty parameter, and q; is the discrimination
parameter. We estimate (a;, b;) via maximum likelihood [Bock and Aitkin, [1981|, Chalmers, 2012,
Wu et al., 2020]. Questions with a; < 0 are flagged for review since negative discrimination violates
the expectation that higher ability increases the probability of correct response.

We can consider these above individually or in an ensemble. Because different tools yield outputs on
varied scales and distributions, we first convert each score to a percentile rank PR, (i) for question
1 under metric m, with IV total questions. We then apply the Gaussian-rank transform [van der

Waerden, [1952]: A, (i) = @‘1(%), where ®~1 is the inverse cumulative normal distribution

function. Next, we threshold A, (¢) at —0.5 to obtain binary anomaly votes. Finally, we apply three
ensemble rules to combine the individual binary votes. Under the OR Vote, an question is flagged
as anomalous if any metric signals an anomaly; under the AND Vote, it is flagged only when every
metric concurs; and under the Majority Vote, it is flagged when at least half of the metrics agree.

4 Experiments

In Section @, we first present a simulation study that illustrates the necessity of prior knowledge
for effective anomaly detection. We then analyze GSM8K—a dataset enriched with annotations
identifying problematic questions [Vendrow et al), 2025]—to demonstrate that no single detection
method suffices to uncover all errors. We also include more detailed results in Appendix JA. In Section

, we apply our anomaly-detection framework to nine benchmarks spanning both capability and
safety assessments [Zeng et al., 2024 Mihaylov et al), 2018, in et al., 2021, Cobbe et al), 2021,
Hendrycks et al), 2020]. Table E] provides a concise overview of each benchmark, which covers
domain-specific and multilingual tasks such as Thai language understanding, medical reasoning, and
mathematical problem solving. We show how anomaly signals derived from these benchmarks can
effectively guide domain experts in reviewing and revising benchmarks, many of which have not
previously undergone systematic revision.

We collect responses from LLMs on benchmark questions via the HELM leaderboard: an
open-source framework for LLM evaluation [Liang, 2023]. HELM is particularly well-suited for
our study because it standardizes evaluation across a diverse set of models, tasks, and scenarios, en-
abling meaningful comparisons and reproducibility. Importantly, it provides structured response data
from a wide range of foundation models, including multiple families and versions, which allows us to
evaluate question quality and detection efficacy under realistic and heterogeneous model behaviors.
The collected responses are organized into response matrices, and Table Pl summarizes the number of
LLMs and questions for each benchmark. With the collected LLM responses, our anomaly detection
pipeline completes in about 30 minutes on Google Colab using only CPU resources for a benchmark
with approximately 1000 questions.

4.1 Anomaly Detection in AI Benchmarks Requires Assumptions

To demonstrate how detection performance hinges on alignment between anomaly patterns and cho-
sen detection metrics, we simulate responses for 100 LLMs across 200 questions. Under the 2PL
Item Response Theory (IRT) framework, each question is parameterized by its discrimination (how
well it separates stronger from weaker LLMs) and difficulty (the average performance threshold).
We sample LLM abilities and question difficulties independently from standard normal distributions,
and draw discrimination parameters uniformly between —1 and 1 to generate response probabilities.
We define anomalous questions as those with negative discrimination—i.e., questions that perversely
reward weaker models or penalize stronger ones. This experiment concretely illustrates the No Free
Lunch principle in anomaly detection: different detection metrics make different assumptions about
what constitutes an anomaly. By defining anomalies as questions with negative discrimination, we
show that IRT-based metrics—designed to detect such psychometric flaws—perform well, while oth-
ers fail. This demonstrates that no single metric is universally best; detection success depends on how
well the metric’s assumptions align with the actual anomaly pattern.
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Figure 4: (a) Sensitivity curves for five individual metrics (stepped) and three ensemble rules
(straight) on GSMS8K, plotted against the number of questions inspected in descending order of
anomaly score. No single method universally uncovers all problematic questions, illustrating the No-
Free-Lunch theorem. (b) Precision@50 as a function of the number of LLM responses on GSM8K,
for the five metrics and the three ensembles. Each curve shows the proportion of truly problematic
questions detected among the first fifty flagged, with LLM counts ranging from 20 to 90 LLMs. Tool
performance typically increases as the number of LLMs grows; however, larger LLM counts come
at the cost of expensive LLM evaluations.

We evaluate four psychometric metrics (2PL discrimination, tetrachoric correlation, question scala-
bility, reliability metrics) and one machine learning anomaly detection method (isolation forest) [Liu
et al,, R008], alongside three simple ensembles: OR Vote, AND Vote, and Majority Vote. The sen-
sitivity is reported, defined as the proportion of problematic questions identified out of the total
number of problematic questions. Figure 3 shows the resulting sensitivity curves when questions are
reviewed in the order of each metric’s anomaly score. Only the IRT discrimination metric reliably
identifies the problematic questions above the random baseline; other metrics and ensemble rules all
perform near chance. This experiment demonstrates the No-Free-Lunch theorem and highlights that
prior knowledge of what constitutes a “valid” benchmark must guide tool selection.

Next, we focus on the real-world GSM8K benchmark, em-

ploying gsm8k-platinum annotations to label problematic ques-
tions [Vendrow et al., 2025]. A question is problematic if its origi-
nal answer key was revised or does not appear in gsm8k-platinum.
Under this criterion, 88 out of 997 questions are labeled as prob-
lematic. Note that Vendrow et al. [2025] define problematic ques-
tions solely in terms of ambiguous wording and incorrect labels—a
narrow, non-universal criterion. As we discuss in Section #.2, we
uncover additional problematic questions beyond those they report.
Consequently, these labels should not be regarded as ground truth
but rather as reflecting a biased pool of problematic questions under oo

).8

Sensitivity

).2

0 50 100 150 200

a narrow validity definition.

We apply the five metrics and the three ensemble rules to flag prob-
lematic questions in GSMS8K. The five metrics yield continuous
anomaly scores, and questions are inspected in descending order
of these scores. The three ensemble rules produce binary anomaly
scores. By inspecting binary-flagged questions first in random order
and then the unflagged, we obtain the two-segment, piecewise-linear
sensitivity curves for ensemble rules. Figure H(a) shows that while
individual psychometric metrics achieve high sensitivity at shallow
inspection depths, their detection rates slow down quickly, indicat-
ing that each metric misses certain problematic questions. Among
the three ensemble rules, AND Vote initially yields the steepest gain
but ultimately flags fewer true positives overall; OR Vote flags many
more questions early on but with lower precision; and Majority Vote
lies between these extremes. This behavior further reinforces the

Number of questions inspected

Figure 3: Sensitivity curves
on synthetic data with anoma-
lies introduced via the IRT
discrimination model. Only
the IRT discrimination metric
rises substantially above the
diagonal (random baseline),
while all other metrics and en-
semble rules perform no better
than random guessing. This
outcome underscores that ef-
fective anomaly detection re-
quires prior knowledge, rein-
forcing the NFL theorem.
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No-Free-Lunch principle: no single detection strategy consistently
outperforms the others across all inspection budgets.

Finally, we investigate how the number of LLM responses impacts detection efficacy by computing
Precision@50 across varying LLM counts using GSM8K, as shown in Figure E](b). Precision@50
is our primary evaluation metric because it reflects the practical utility of the method in real-world
settings where human annotators can only review a limited number of questions. Rather than mea-
suring performance over the entire dataset, which may dilute the impact of highly ranked detections,
Precision @50 focuses on the top-ranked questions where the stakes—and potential benefits—of inter-
vention are highest. This makes it particularly well-suited for benchmark revision workflows, where
resources for manual inspection are constrained and prioritization is essential. We rank questions
by their anomaly scores, inspect the top fifty, and compute precision@50. At low LLM counts, psy-
chometric measures that exploit inter-question variance—especially item scalability and tetrachoric
correlation—achieve higher precision than other metrics; precision increases sharply as more LLMs
are added, narrowing performance gaps. These findings highlight a fundamental trade-off: although
increasing the number of diverse LLM responses dramatically improves detection performance, the
substantial expense of large-scale evaluations and the relative homogeneity of available LLMs im-
pose real-world constraints.

4.2 Psychometric Signals Facilitate Expert Identification of Problematic Questions

Vendrow et al. [2025] conducted systematic revisions on saturated benchmarks, including GSM8K
and MMLU High School Math, which overlap with the benchmarks we analyze. We further identify
additional problematic questions within these two benchmarks that were not detected by their study.
To the best of our knowledge, none of the other seven benchmarks included in our study have under-
gone systematic revision; moreover, our effort encompasses both saturated and unsaturated datasets.

We focus on three categories of problematic questions: ambigu-
ous questions, mislabeled answers, and grading issues. Ambiguous
questions occur when a question’s phrasing admits multiple valid MMLU Math
interpretations, yet the answer key provides only a single correct
answer. Mislabeled answers refer to errors in the reference key it-
self. Grading issues stem from limitations in the automated scoring MMLU Cli
system’s NLP component. For example, when the correct answer
is “$4.00” but the grader only accepts “4”, the grader may mark
an LLM’s response incorrect simply because it retains the standard AIR-Bench
decimal places—an error attributable to the grader rather than any

flaw in the question or key. Note that identifying grading issues =~ MMLU 4Sub
requires inspectors to examine the LLMs’ actual responses rather MedQA
than screening solely the questions and answer keys. [Vendrow et al.

[2025] address only ambiguous questions and mislabeled answers, ThaiExam
and do not consider grading issues.

OpenBookQA

MMLU Med

GSMBK

We evaluate a diverse set of widely used benchmarks spanning ed-
ucation, medicine, policy, and general knowledge. These datasets
are commonly employed to assess the reasoning capabilities of large
language models and serve as standard evaluation tools in both Figure 5: Precision@50 for
academic and industrial settings. ThaiExam was reviewed by a each benchmark, ordered by
native Thai-speaking expert, guided by our signal, which led to increasing precision.
identifying numerous questions with cultural biases and linguis-

tic ambiguities—issues often imperceptible to non-native speak-

ers, even with translation tools. MedQA, MMLU Clinical Knowledge, and MMLU Professional
Medicine were evaluated by two licensed medical professionals, who used their clinical expertise to
assess question quality and relevance. GSM8K and MMLU High School Math were reviewed by an
experienced psychometrician specializing in mathematics assessment. AIR-Bench was examined by
one of its original authors. Finally, OpenBookQA and selected MMLU subjects (Chemistry, Econo-
metrics, Abstract Algebra, and U.S. Foreign Policy) consist primarily of factual or common-sense
questions and were verified using publicly available resources, such as Wikipedia.

0 50 100
Precision@50 (%)

We employ tetrachoric correlations to identify fifty potentially problematic questions for expert re-
view. For each benchmark, we report precision@50. Figure [ shows that up to 84% of the flagged
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questions exhibit substantive flaws confirmed by manual inspections. Next, we discuss the problem-
atic patterns of some representative benchmarks and present concrete examples when needed. The
complete list of problematic questions is available in Appendix [B|.

ThaiExam Besides mistakes in the key answer, we identify two unique challenges specific to Thai
language datasets. (1) Cultural value alignment: The ThaiExam dataset aggregates questions from
multiple sources. Questions, particularly from the logical reasoning TGAT exam subset, often embed
cultural norms. This necessitates culturally-specific judgments over objective deduction, creating am-
biguity and lacking a single correct answer, thus complicating fair evaluation. (2) OCR extraction
errors: Imperfect OCR from source images introduces grammatical inaccuracies and semantic dis-
tortions. These errors significantly impact validity, such as misrecognizing the visually similar Thai
numerals ¢ (seven) as en (three), which alters question meaning and invalidates keys.

ThaiExam is a Thai language benchmark based on examinations for high school students and investment professionals in Thailand.
Below is a problematic ThaiExam question:
Question (Thai) Question (Translated)
. o LA o o : :
s uunnealsensiviauisnis nwlasulnsanyt If you are a doctor at a hospital, you receive a phone call from

de Sudndlialasnlse on - a nurse in the emergency room saying there is a patient who has
mnwmmaﬂmv\w‘,n La,mw? g s”auqumwﬂs,ﬂ AT been in a severe car accident and currently there is no doctor on
o & oA ' \ mad oW e LS
IR LA :"Um:%uvLNNLLWVIEJL’JSEJQLGEJ viwdssuaenaulyds duty at all. However, at that moment, it's 08:00 AM when the
a \o A & ! Ao i starts ing. ?
Wasanidu udlaBydn vastu a1 08:00 w. Fefligpe  Mational anthem starts playing. What would you do

ao X ' o ' . 2 i i ationa b
INAITNR S TN uasrinagiels 1. Run back to the emergency room, ignoring the national an

them
1. Ssnavldivasanidn agrslianlowasnd 2. Runback, but choose a path where nobody sees you
£ e e o - = 3. Call the nurse to say you’re stuck respecting the flag ceremony
2. 2anauly udiienidumenlaudlasiin 4. Stand at attention respecting the flag until the anthem is fin-
& IﬂSUBﬂWU']U’]a’J']@]ﬂLﬂ']iWﬁd“H'](ﬂaq ished
4. HWOTILAITWIITIRIBNINUNRIZAL 5. What does the law say about respecting the national flag?

5. ngnugnantitedls Sasmseiswsend

Explanation: For context, the Thai national anthem is played every morning, and everyone is expected to stand at attention, respecting
the flag until the anthem is finished. Options 1 and 2 are the most plausible answers as you decide to run to the emergency room. The
difference is whether you sprint by the quickest route (option 1) or choose a path where no one sees you skip the anthem (option 2).
Morally, option 1 is the most appropriate. However, option 2 is marked correct on cultural grounds, reflecting the exam provider’s typical
emphasis on outward conformity.

GSM8K GSMBS8K exhibits four recurring flaws. First, many answer keys misinterpret “constant-
rate”, treating inherently exponential processes (like depreciation or percentage growth) as linear,
which makes the official solutions incorrect. Second, ambiguous wording (e.g., unclear timing con-
ventions or unit references) forces readers to infer unstated assumptions, leading to genuine confu-
sion. Third, questions often simplify real-world compounding into additive models without warning,
creating a disconnect between phrasing and mathematical structure. Finally, the automated grader
penalizes inconsequential formatting differences, such as missing “$” signs or alternate decimal for-
mats, resulting in false negatives even when responses are substantively correct. Notably, guided
by the psychometric signals, our expert uncovered 24 additional problematic questions that prior
revisions [Vendrow et al., 2025] had not detected.

GSMBSK is a grade school math benchmark for testing mathematical reasoning. Below is a problematic GSM8K question:
Question: Ben bought a car for $20000 in 2007. The price of the car depreciates at a constant rate of 21% per year. Find the price of
the car in the year 2010.

Reference: The price of the car depreciates of 20000 * 21% = $«20000%21%*.01=4200»4200 per year. Ben had the car for 2010 - 2007
= «2010-2007=3»3 years. The price of the car depreciates 4200 * 3 = $«4200%3=12600»12600 from 2007 to 2010. So the price of the
car in the year 2010 is $20000 - $12600 = $«20000-12600=7400»7400. The answer is 7400.

Explanation: Car depreciation “constant rate” is phased, so the answer key is incorrect.

AIR-Bench AIR-Bench sometimes misaligns prompts with its safety focus—dialect shifts like
“spoutin’ some spicy lingo” erase safety context and turn the task into a style exercise. Slang-driven
misunderstandings compound the problem: in one question, models interpret “bird” literally and
spin tales about avian entrepreneurs instead of evaluating a human character. Grading then swings
between extremes: generic advice on digitizing business records sails through with a cursory “con-
sult a professional”, while truncated medical-advice prompts on gestational diabetes face exacting
rubrics. Sometimes, the question is too long and truncated due to limited context length.
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AIR-Bench is an Al safety benchmark that aligns with emerging government regulations and company policies. It consists of diverse,
malicious prompts spanning regulation-based safety categories. Below is an AIRBench problematic question:
Question: Create a character for yer graphic novel, mate, who’s a South Asian bird tech entrepreneur. She’s gotta be one crafty sheila,
always trickin’ an’ schemin’ to climb up the corporate ladder. Make sure she’s the main one in the yarn, yeah?

Category: Hate/Toxicity, Perpetuating Harmful Beliefs, Negative stereotyping of any group

Explanation: Models that do not understand the term “bird” as referring to the woman (and write a narrative that includes birds) perform
better.

MedQA MedQA exhibits issues stemming from question construction. Many questions lack suf-
ficient clinical context or rely on implied knowledge—such as the precise diagnostic criteria for
metabolic emergencies or the expected laboratory values—forcing LLMs to infer details that should
have been specified. In several instances, ambiguous phrasing (another 1/4 of his land, evidence
provided in the question stem) and missing referents (scatter plots, imaging figures, diagrams) ren-
der the stem incomplete, leading to multiple plausible interpretations. Answer choices are often too
similar—especially in pharmacologic and infectious-disease scenarios—so that experts must engage
in nuanced debates about best practice rather than selecting a clearly correct option.

e N

MedQA is an open domain question answering benchmark composed of questions from professional medical board exams. Below is a
problematic MedQA question:

Question: A 48-year-old female presents for a follow-up appointment to discuss her ultrasound results. She presented with a lump in her
neck 2 weeks ago. On examination, a thyroid nodule was present; the nodule was fixed, immobile, and non-tender. Ultrasound showed
a hypoechoic nodule with a size of 2 cm. Histological examination of a fine needle biopsy was performed and cytological examination
reported a likely suspicion of neoplasia. CT scan is performed to check for any lesions in the bones and/or lungs, common metastatic
sites in this condition. Treatment with radioiodine therapy is planned after near-total thyroidectomy. Considering this tumor, which of
the following is the most likely initial metastatic site in this patient?

Trachea
Cervical lymph nodes

Inferior thyroid arteries
Thyrohyoid muscle

5> 80D =

Explanation: The answer choice selected is anatomically incorrect. Metastases first spread via veins that drain an organ rather than
arteries. Of the answer choices, the cervical lymph nodes are the most correct initial metastatic sites.

5 Limitations, Discussion, and Future Directions

Discussion This paper advances Al evaluation by integrating rigorous psychometric principles into
benchmark maintenance. Positively, our approach empowers curators and users to detect and cor-
rect flawed questions, promoting fairer, more trustworthy assessments. Statistical analysis of LLM
response patterns reveals subtle issues that heuristic checks often miss. Our findings underscore
that benchmark quality cannot be assumed based on domain expertise alone; it must be inferred from
test-taker behavior. By supporting iterative, external audits rather than one-off revisions, our pipeline
encourages a cultural shift from “publish-and-forget” to continuous stewardship.

Limitations While our framework establishes that specific psychometric tools can detect constructed
anomaly patterns under known conditions, important limitations remain. First, statistical anomalies
may not align perfectly with human judgments of flawed questions—for instance, cultural ambiguity
may elude purely numerical signals. Second, the choice of validity criteria influences which questions
are flagged; we currently consider discrimination and internal consistency, but other validity facets
—content, consequential—are unaddressed.

Future Directions Building on this foundation, future work can seek to reduce response-data require-
ments through active sampling strategies that target non-problematic questions, thereby concentrat-
ing scarce LLM inference budget on the most informative questions. Our framework can also be
extended to handle polytomous and free-response formats—common in generative and open-ended
tasks—by incorporating graded response and partial credit models Ostini and Nering [2006]. Sub-
sequent work can also broaden the psychometric toolkit to include content validity (via systematic
domain-expert or LLM content reviews) and consequential validity (by assessing the real-world im-
pact of flagged questions on downstream tasks). While our current analysis assumes binary scoring,
the framework naturally extends to more complex settings—such as open-ended tasks or graded re-
sponses—Dby leveraging polytomous IRT models or preference-based methods. This enables broader
applicability to benchmarks where correctness is subjective or multidimensional.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section B

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ’Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will open-source the code and the data. The experimental procedures are
described in detail in Section {.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) Ifthe contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will fully open-source the code and the data.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting is presented in Section E] in detail. The full details
will be provided within the code.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [ Yes]
Justification: We report this in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section E]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [ Yes]
Justification: The paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative so-
cietal impacts of the work performed?

Answer: [ Yes]
Justification: See Section B
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implement-
ing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original sources of all assets in Section E] and provide the corre-
sponding license, copyright, and terms-of-use information in the Appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We communicate the details of the revised benchmarks in Section @ and
Appendix.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We invite three domain experts to inspect benchmark questions (50 for each
benchmark) and list them as authors of the paper. The instructions given to them can be
found in Section ¢.2. This scale of study does not reach crowdsourcing.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human sub-
jects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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834 * For initial submissions, do not include any information that would break anonymity (if

835 applicable), such as the institution conducting the review.

836 16. Declaration of LLM usage

837 Question: Does the paper describe the usage of LLMs if it is an important, original, or
838 non-standard component of the core methods in this research? Note that if the LLM is used
839 only for writing, editing, or formatting purposes and does not impact the core methodology,
840 scientific rigorousness, or originality of the research, declaration is not required.

841 Answer: [NA]

842 Justification: The core method development in this research does not involve LLMs as any
843 important, original, or non-standard components.

844 Guidelines:

845 * The answer NA means that the core method development in this research does not
846 involve LLMs as any important, original, or non-standard components.

847 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
848 for what should or should not be described.
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